Chapter 10 - Simple Harmonic Motion

Where did you see the above graph in a lab before?

Periodic Motion - Motion that REPEATS the same way every time

Period = TIME for one cycle $=T(s)$

Types of Periodic Motion

1) Circular
2) Pendulums
3) Springs

Also called Simple Harmonic Motion repeats due to RESTORING force

$a_{x}={ }^{-} a_{c} \cos \theta$
$a_{x}=r \omega^{2} \cos \omega t$
$a_{x}=-A \omega^{2} \cos \omega t$
since $\cos \max =1$
$\mathrm{a}_{\text {max }}=\mathrm{A} \boldsymbol{\omega}^{2}$

$$
\begin{aligned}
& \text { SHM for circular motion and calculus } \\
& x=A \cos \omega t \\
& x^{\prime}=v=-A \omega \sin \omega t \\
& x^{\prime \prime}=a=-A \omega^{2} \cos \omega t
\end{aligned}
$$

What affects the period of a spring?

$x=$ distance from 0 (equilibrium point were $F_{\text {net }}=0$)
Hod.. 6 Law

$$
\mathrm{F}_{\mathrm{s}}=-\mathrm{kx}
$$

units $=\mathrm{N} / \mathrm{m}$

Spring in Equilbrium

Mathematics of frequency of moving spring
$-F x=m a$
$-k(A \cos \omega t)=m\left(-A \omega^{2} \cos \omega t\right)$
$\omega=\sqrt{\mathrm{k} / \mathrm{m}}$
= frequency in rad/s
$\mathrm{f}=\mathrm{frequency} \mathrm{in} \mathrm{rev/s....just} \mathrm{divide} \mathrm{by} 2 \pi$
so $f=(1 / 2 \pi) \sqrt{k / m}$

Only factors that matter are mass at the end and "Tightness" = spring constant = k

T is INVERSELY related to k
T is DIRECTLY related to m
$T_{s}=2 \pi \sqrt{m} / \mathrm{k} \quad$ note... $T=1 / \mathrm{f}$ so this is just f "inversed"

Energy of Springs

$$
\begin{aligned}
& W=\text { area }=1 / 2 F x=k e-12 x^{2} \\
& 1 / 2(k x) x=1 / 2 k x^{2} \\
& U_{s}=1 / 2 k x^{2}
\end{aligned}
$$

Conservation of Energy and Springs

$\mathrm{U}_{\mathrm{go}}+K \mathrm{E}_{\mathrm{o}}+\mathrm{U}_{\mathrm{so}}=\mathrm{U}_{\mathrm{gf}}+K \mathrm{E}_{\mathrm{f}}+\mathrm{U}_{\mathrm{sf}}$
$m g h_{o}+1 / \mathrm{mv}_{\mathrm{o}}{ }^{2}+1 / 2 \mathrm{kx}_{0}{ }^{2}=\mathrm{mgh}_{\mathrm{f}}+1 / 2 \mathrm{mv}_{\mathrm{f}}{ }^{2}+1 / 2 \mathrm{kx}_{\mathrm{f}}{ }^{2}$

What affects the period/frequency of a pendulum?

Length and gravity are only variables that matter

T and L are DIRECTLY related
T and g are INVERSELY related

Elasticity - distortion of object due to applied force that disappears when force disappears

$\begin{array}{ll}\text { Linear } \\ \text { Deformation } & F=Y\left(\Delta L / L_{0}\right) A\end{array}$	$\begin{array}{l}Y=\text { Young's } \\ F=k_{x}\end{array}$	Modulus

Sheer Deformation

$\mathrm{F}=\mathrm{S}(\boldsymbol{\Delta} \mathrm{x} / \mathrm{Lo}) \mathrm{A}$

$\mathrm{S}=$ sheer modulus

***Note F and A are //

Volume Bulk Deformation

$\mathrm{P}=$ pressure $\quad \mathrm{P}=\mathrm{F} / \mathrm{A}=\mathrm{N} / \mathrm{m}^{2}=$ Pascals $=\mathrm{Pa}$
$\mathrm{P}=-\mathrm{B}\left(\Delta \mathrm{V} / \mathrm{V}_{\mathrm{o}}\right) \quad \mathrm{B}=$ Bulk Modulus $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
P is all around neither \quad Stress $=P$ // nor \perp Strain $=\Delta V / V_{0}$

