

- vibrates perpendicular to motion
does NOT require a medium
ex. radiation (aka light, UV, IR, etc)

Speed of wave

- depends on TENSION of string or spring
- depends on medium
- waves travel at the SAME speed in the SAME medium

Equations for Wave Speed

$$
\begin{aligned}
& v=x / t \text { so....for a wave } \\
& v=\lambda / T \text { but } T=1 / f \text { so... } \\
& v=\lambda f \quad * * \text { True for ALL waves }
\end{aligned}
$$

$\mathbf{v}=\sqrt{\frac{\mathbf{F}}{\mathbf{m} / \mathrm{L}}}$ | ${ }^{* * *}$ True only for strings/ |
| :--- |
| springs |

for SHM remember
$x=A \sin \omega t$ or $A \sin (2 \pi f t)$
so for waves
$\mathrm{y}=$ distance in y direction = propagation
so...

Sound Waves

- Due to vibrations

- Requires molecules to vibrate or no sound

Definitions of wave terms for

frequency = pitch

$<20 \mathrm{~Hz}=$ infrasonic (below human hearing)
$>20 \mathrm{kHz}=$ ultrasonic (above human hearing)
adults lose high frequency (cell phone ringers)
amplitude $=$ loudness

ear perceives as pressure, high pressure $=$ pain...normal conversation $=.03 \mathrm{~Pa}$

Physics of speakers:
Front and back waves are shift by

180° or $\lambda / 2=$ destructive interference

by blocking "back" waves, sound improves

Speed of Sound

- Fastest in solids - due to elasticity NOT density
- $4 x$ faster in water than air
- 17 x faster in steel than air
- $v_{\text {air }}=343 \mathrm{~m} / \mathrm{s}$ (this is the WAVE not the molecules)

Remember the molecule speed is relative to temperature - 3/2(kT) $=1 / 2 \hat{m}^{2} \downarrow^{2}=K E$

$$
k_{i}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}
$$

Speed of SOUND WAVES in different types of media

Sound Intensity Level

- Sound intensity relative to human hearing
- $\mathrm{dB}=$ decibels

$$
\beta=10 \log \left(1 / I_{0}\right)
$$

- I = actual intensity
- $\mathrm{I}_{0}=$ min intensity a human can hear $=$ $10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

Sound Intensity

- Energy passing through unit area (perpendicular to ray) per second
- $\mathrm{I}=$ Energy/second/area = P/A = W/m²
- Follow inverse square law
- Normally a point source and since

LOG rules to remember.....

$$
\begin{aligned}
& \log (x \times y)=\log (x)+\log (y) \\
& \log \left(\frac{x}{y}\right)=\log (x)-\log (y) \\
& \log \left(x^{a}\right)=a \times \log (x)
\end{aligned}
$$

Doppler Demo......
http://www.sciencejoywagon.com/ plrsci/media/soundwav.htm

Doppler Effect $=$ apparent Change in frequnnig due to relative motion

Moving observer:

$$
f^{\prime}=f\left(1-v_{0} / v\right) \quad f^{\prime}=f\left(1+v_{0} / v\right)
$$

Moving observer AND source:

