Ch 17 - Standing Waves and Interference

/www.physicsclassroom.com/mmedia/waves/swf.cfm

Standing wave animation

- Constructive Interference
- Destructive Interference
- Standing Waves

Constructive interference

- Waves on "same" side
- trough + trough OR crest + crest
- Wave amplitude increases $] \rightarrow \leftarrow$

Destructive Interference

- Waves on "opposite" sides
- crest + trough
- amplitude decreases

If two waves of SAME frequency and IN PHASE are emitted from TWO speakers

creates pattern of destructive and constructive interference
hear loud and soft
creates nodes and antinodes
creates max's and min's

Diffraction of sound

Huygen's Principle: Waves can be broken down into smaller waves

Diffraction -bending as wave goes through
or around a barrier

- allows one of the small waves to pass
through
causes wave to "bend" into single wave


```
path length difference = difference
between distances sounds travel (r1- r
pictures) = \Deltad
```

if $\Delta d=m \lambda$ then $=$ max, antinode, LOUD if $\Delta d=(m-1 / 2) \lambda=\min$, node, NO SOUND
$\mathrm{m}=$ integer $=1,2,3$... so multiple places where you have loud or soft sounds P or Q

Amount of diffraction (bending) depends on wavelength and opening
$\sin \theta=\lambda / D$--- slit opening
$\sin \theta=1.22(\lambda / D)-$ circular opening (like a speaker)

Beat frequency = due to difference between two closely sounded frequency interfering with each other

$$
f_{b}=\left|f_{1}-f_{2}\right|
$$

Demo - tuning fork on board, music box
Demo - wine glass and bridge

Standing Waves

Demo - wave generator

Forced vibration - forcing an object to vibrate, causes more molecules to vibrate and increases amplitude $=$ louder

Resonance $=$ forcing an object to vibrate at its natural frequency = causes HUGE increase in amplitude

Fundamental frequency

- Biggest wave
- smallest frequency $\quad f_{1}=v / \lambda=v / 2 L$
f_{1}

First Overtone

$$
\mathrm{f}_{2}=\mathrm{v} / \lambda=\mathrm{v} / \mathrm{L}
$$

Second Overtone

- $3^{\text {rd }}$ Harmonic
$\mathrm{f}_{3}=3 \mathrm{f}_{1}$

$f_{3}=v / \lambda=v /(2 / 3) L=3 v / 2 L$

That was for closed/closed ends...but what about closed open??

Demo..soda bottle

Figure 29.1

So for close/open system
$f_{n}=n v / 4 L$.but $n=1,3,5, \ldots \ldots$

Careful when reading questions... $2^{\text {nd }}$ frequency is $3^{\text {rd }}$ and $3^{\text {rd }}$ frequency is $5^{\text {th }} \ldots$...just read what they are asking...

Open/Open system is the same as closed/ closed

Demo - singing rod

$L=3 \lambda / 2$

