

Voltage	Current	Resistance	Power
0	0	•	0
0	0	•	•
0	0	•	0
e	•	•	0

Parallel	Series		
mulitple paths	ONE path		
$1/R_t = \Sigma 1/R_i (R \downarrow)$	$R_t = \Sigma R_i(R \uparrow)$		
$I_t = \sum I_i$	$I_t = I_i$		
$V_t = V_i$	$V_t = \sum V_i$		
$C_t = \Sigma C_i(C^{\uparrow})$	$1/C_t = \Sigma 1/C_i (C.)$		

Equivalent Resistance

- ***do what you know FOR SURE first
- *** pay attentions to
 - > I(Total) vs I (through specific resistor or path
 - > V(Total) vs V (Across ONE branch)
 - > R (Total) vs R (of one part, one resistor)