AP1 - Chapter 18/20 Review F _e = kqq/r ²
= Coulomb's Law = understand how variables can change Fe DON'T plug in signs DO draw FBD to determine direction $f_1 + f_2$ f_3 What is F on q ₂ ? $f_1 = f_2 + f_1$ g_3 What is F on q ₂ ?

Conservation of charge
q, +q2 - 52
$\frac{1+4}{2+3} = 50$
2.5 + 2.5

Voltage	Current	Resistance	Power
energy/ charge	charge/sec	resists current	energy/ time
pushes current	flow of	decreases current	\$, flow rate
volle V	ampsi	<mark>ົນ</mark> R	ωP
V = IR	I = q/t	R = ρL/A R = R _o (1 + α(T-T _o)	P = IV P = I ² R P = V ² /R

Parallel	Series	
multiple paths	ONE path	
$1/R_{t} = \Sigma 1/R_{L}(R_{T})$	$R_t = \Sigma R_i (R \uparrow)$	
$I_t = \Sigma I_i$	$I_t = I_i$	
V _t = V _i	$V_t = \Sigma V_i$	
- Ct - 2Cr(C +)		

Equivalent Resistance

***do what you know FOR SURF first

*** pay attentions to 3 3A

- I(Total) vs I (through specific resistor or path
- > V(Total) vs V (Across ONE branch)
- R (Total) vs R (of one part, one resistor)