AP1 - Chapter 18/20 Review

 $F_{\mathrm{e}}=\mathrm{kqq} / \mathrm{r}^{2}$= Coulomb's Law $=$ understand how variables can change Fe DON'T plug in signs DO draw FBD to determine direction $1 \oplus \stackrel{F_{1}}{\leftrightarrows} 9^{2}$

What is F on q_{2} ? $F_{1}=F_{3}=-\frac{k_{q^{2}}^{2}}{r^{2}}$
assume
all
same q

Voltage	Current	Resistance	Power
energy/ charge	charge/sec	resists current	$\begin{aligned} & \text { energy/ } \\ & \text { time } \end{aligned}$
pushes current	flow of Charfent	decreases current	$\begin{gathered} \$ \text { flow } \\ \text { rate } \end{gathered}$
Volts V	anps 1	$\Omega \mathrm{R}$	$\omega \mathrm{P}$
$\mathrm{V}=\mathrm{IR}$	$\mathrm{I}=\mathrm{q} / \mathrm{t}$	$\begin{gathered} R=\rho L / A \\ R=R_{0}\left(1+\alpha\left(T-T_{0}\right)\right. \end{gathered}$	$\begin{gathered} \mathrm{P}=\mathrm{IV} \\ \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ \mathrm{P}=\mathrm{V}^{2} / \mathrm{R} \end{gathered}$

Parallel	Series
multiple paths	ONE path
$1 / R_{\mathrm{t}}=\Sigma 1 / \mathrm{R}_{i}(R \downarrow)$	$\left.\mathrm{R}_{\mathrm{t}}=\Sigma \mathrm{R}_{1} \mathrm{R} \mathrm{R} \mathbf{4}\right)$
$\mathrm{I}_{\mathrm{t}}=\Sigma \mathrm{l}_{\mathrm{i}}$	$\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{\mathrm{i}}$
$\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{i}}$	$\mathrm{V}_{\mathrm{t}}=\Sigma \mathrm{V}_{\mathrm{i}}$

Equivalent Resistance

***do what you know FOR SURE first
*** pay attention to $1,=3 A$
> I (Total) vs I (through specific resistor or path
> V (Total) vs V (Across ONE branch)
> R (Total) vs R (of one part, one resistor)

