Welcome to AP Physics

Room 412

Mrs. Dimas

Find your assigned and read the barometer story on your table.

DO NOT WRITE ON IT
WRITE a one paragraph response

Make a Table on same paper as barometer summary. Title it Road Runner and make one column = Good Physics and one column = Bad Physics

Chapter 1 Notes - Prerequisite skills and math for Physics

Conversions -

10 slugs --> grams (note $1 \mathrm{~kg}=.0685 \mathrm{~kg}$)

What is Physics?
Here is Sheldon's response

Sheldon tries to "teach" Penny Physics...

/www.youtube.com/watch?v=My1Kzy_cDV0
/www.youtube.com/watch?v=bqg0-9mE_yg

Good Physics	Bad Physics

$$
100 \mathrm{mph} \text {--> ft/s (note } 5280 \mathrm{ft}=1 \mathrm{mi})
$$

Dimensional Analysis - using units/ dimensions to determine if an equation works

$$
\begin{aligned}
& {[\mathrm{L}]=\text { length }} \\
& {[\mathrm{T}]=\text { time }} \\
& {[\mathrm{M}]=\text { mass }}
\end{aligned}
$$

example:

if acceleration $=\mathrm{a}=\mathrm{m} / \mathrm{s}^{2}=[\mathrm{L}] /[\mathrm{T}]^{2}$
and velocity $=\mathrm{v}=\mathrm{m} / \mathrm{s}=[\mathrm{L}] /[\mathrm{T}]$
and distance $=\mathrm{d}=\mathrm{m}=[\mathrm{L}]$

1 Which of the following is a possible equation for acceleration?

A $\mathrm{a}=1 / 2 \mathrm{dt}$
$B d=a t^{\wedge} 3$
C v = at
$\mathrm{D} \mathrm{a}=\mathrm{vt} \mathrm{A}^{\boldsymbol{2}}$

Vectors - Graphical
Add head to tail

More Practice with Graphical Vector Adding

Adding Vectors with Trig -

Analytical Method

1) Break into components
$>x=\cos$
$>y=\sin$
2) Make a table of x and y
3) Add up x's and y's
4) Use Pythagorean theorem to determine magnitude
5) Use trig to determine direction

Trig Identities to remember

```
cos0=adj/hyp
sin}\boldsymbol{0}=opp/hy
tan}\boldsymbol{0}= opp/ad
```


Sample Problem:

A wind is blowing at $20 \mathrm{~km} / \mathrm{hr} 20 \mathrm{deg} \mathrm{W}$ of N while a sailboat moves at $80 \mathrm{~km} / \mathrm{hr}$ W. Neglecting water resistance, what is the resultant velocity of the sailboat?

