Chapter 2 - Kinematics Description of HOW things move
Distance (d) - how far an object
moves if add up all
segments, no direction

1 What's the average speed of an object making a complete circle with a radius of 2 m in 5 seconds?

(m) $G: r=2 m, t=5 s$
$E: G=d / t, d=2 \pi r$
$M: \bar{u}=\frac{2 \pi r}{t}$
$\bar{u}=2 \pi(2 \mathrm{~m})$
$A=\frac{4 \pi m}{5} / \mathrm{s}$

2 What's the average VELOCITY of an object making a complete circle with a radius of 2 m in 5 seconds?

$x-0$
$\bar{v}-\frac{x}{t}=0$

Runner vs Sprinter or Moving Man ($2 \mathrm{~m} / \mathrm{s}$ vs $2 \mathrm{~m} / \mathrm{s}^{2}$)
Acceleration $=$ CHANGE in VELOCITY per time 3 ways to accelerate:

Free Fall

- Falling due to gravity_ only
- Acceleration due to gravity $=-10 \mathrm{~m} / \mathrm{s}^{2}$
-What does that mean??? $\frac{10 \mathrm{~m} / \mathrm{s}}{\mathrm{s}}=\frac{\Delta v}{t}$

Suppose we had a man fall oft a bulling with no parachute...how far would he fall every second and how fast would he fall?

Big 5 Kinematic Equations

1) $\bar{v}=x / t$ (note this is AVERAGE v)
2) $x=1 / 2\left(v_{o}+v_{f}\right) t$

$v=0, t=0, x=0, a=-10 \mathrm{~m} / \mathrm{s}^{2}$
 $x=-5 m$
 $\bar{v}=\frac{0+30}{2} .15 \mathrm{~m}$

How could we do this with math?

$$
\begin{aligned}
& \text { Start with.... } \\
& x=1 / 2\left(v_{0}+v_{f}\right) t \quad t^{t^{+v_{0}}} \quad \begin{array}{l}
\text { and } a=\left(v_{f}-y_{0}\right) / y \times \notin t
\end{array} \quad t v \\
& x=1 / 2\left(2\left(v_{0}+v_{0}+v_{t}\right) t v_{0}+a t-v_{f}\right. \\
& \begin{array}{c}
x=v_{0} t f^{\prime} / 2 a t^{2} \\
+x_{0}
\end{array}
\end{aligned}
$$

OR we could get rid of t

$$
\begin{gathered}
\frac{2 x=}{v_{0}+v_{f}} \frac{2\left(v_{0}+v_{f}\right) t}{v_{0}+v_{f}} \quad \frac{t a}{a}=\left(v_{f}-v_{0}\right) \\
t=\frac{2 x}{v_{0}+v_{f}}=\frac{v_{f}-v_{0}}{a} \quad t=\frac{v_{f}-v_{0}}{a} \\
2 a_{x}=\left(v_{f}-v_{0}\right)\left(v_{f}+v_{0}\right) \\
2 a x=v_{f}^{2}-v_{0}^{2}
\end{gathered}
$$

Now we have the BIG 5

3 A ball is thrown up in the air at $25 \mathrm{~m} / \mathrm{s}$. How long does it take to reach the top?

$$
\begin{aligned}
G: v_{0} & =25 \mathrm{~m} / \mathrm{s}, v_{f}=0 \\
a & =-10 \mathrm{~m} / \mathrm{s}^{2} \\
F: t & =? \\
E: v_{f} & =\frac{v_{0} t+v_{0}}{a}-y_{0} \\
\mu_{:} & t=\frac{v_{f}-v_{0}}{a} \\
t & =\frac{0-25 \mathrm{~m} / \mathrm{s}}{-10 \mathrm{~m} / \mathrm{s} 2} \\
& =2.5_{5}
\end{aligned}
$$

Acceleration Graph

