Chapter 2 - Kinematics

Description of HOW things move

Distance (d) - how far an object moves if add up all segments, no direction

Displacement (x) - how far an object moves between start and end, direction matters.

Speed (u)	Velocity (v)
Total distance	Displacement
per time	per time
no direction	one direction
scaler	vector
units = m/s	units = m/s
ex = 5 m/s	ex = 5 m/s south

1 What's the average speed of an object making a complete circle with a radius of 2 m in 5 seconds?

m in 5 seconds?

F: T=?

F: T=?

M: T=217"

M: T=217"

Find Equation Math [Answer 2 What's the average VELOCITY of an object making a complete circle with a radius of 2 m in 5 seconds?

Runner vs Sprinter or Moving Man (2 m/s vs 2 m/s²)

Acceleration = CHANGE in VELOCITY per time

3 ways to accelerate:

Free Fall

- Falling due to gravity = -10 m/s2
- -What does that mean??? | Om/s

Big 5 Kinematic Equations

1) $\overline{V} = x/t$ (note this is AVERAGE v)

2)
$$x = 1/2 (v_o + v_f)t$$

3)
$$a = \Delta v/t = (v_f - v_g)/t$$
) haught: 0

Suppose we had a man fall off a building with no parachute...how far would he fall every second and how fast would he fall? v=0, t=0, x=0, a=-lom(sz

How could we do this with math?

Start with.... $x = 1/2(v_0 + v_i)t \quad \text{and } a = (v_i - v_i)/t \text{ x.t.}$ $x = 1/2(v_0 + v_i)t \quad \text{and } a = (v_i - v_i)/t \text{ x.t.}$ $x = 1/2(v_0 + v_i)t \quad \text{and } a = (v_i - v_i)/t \text{ x.t.}$ $x = 1/2(v_0 + v_i)t \quad \text{and } a = (v_i - v_i)/t \text{ x.t.}$ $x = 1/2(v_0 + v_i)t \quad \text{and } a = (v_i - v_i)/t \text{ x.t.}$

OR we could get rid of t

$$\frac{\sum x = \frac{1}{2} \sqrt{2(x^{2} + x^{2})}t}{\sqrt{2} \sqrt{2} \sqrt{2}} \frac{\sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2}}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2} \sqrt{2}}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}}{\sqrt{2} \sqrt{2} \sqrt{2}}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2} \sqrt{2}$$

$$\frac{\sum a x = \sqrt{2} \sqrt{2} \sqrt{2}$$

$$\frac{\sum a x = \sqrt{2}$$

$$\frac{\sum a$$

Equations	Х	V	Vo	V_{f}	t	а	
$\overline{V} = x/t$	<i></i>	1			/		onl
$x=1/2(v_{o} + v_{f})t$	J		✓	٧	V		Sont
$v_f = at + v_o$			V	V	✓	/	10
$x = 1/2at^2 + v_0t$ (+ x_0)	J		V		>	1	hor
$v_{f^2} = 2ax + v_{o^2}$	J		√	V		V	No 1

Graphs - Matching graphs

