Chapter 3 - Kinematics in 2-D

If a plane drops a flare as it is flying at a constant velocity, what path will the flare follow?

1 Answer?

If a hunter aims at a monkey in a tree who is startled and drops when he hears the gun shoot, where should the hunter aim?

2 Answer?
A Below the monkey
B Above the monkey
C At the monkey
D Depends on speed of bullet

Projectile -

An object that continues to move with only gravity acting upon it after given an initial velocity with a horizontal component

Projectile equations (slight modifications)

horizontal direction

$\bar{v}=x / t — x=v_{x} t$
vertical direction

$$
\begin{array}{ll}
x=1 / 2 a t^{2}+v_{o} t \longrightarrow y=1 / 2 g t^{2}+v_{o y} t \\
v_{f}^{2}=2 a x+v_{0}{ }^{2} \longrightarrow v_{\text {fy }}=2 g y+v_{o y}{ }^{2} \\
v_{f}=v_{o}+a t \longrightarrow & v_{\text {fy }}=v_{o y}+g t
\end{array}
$$

How fast is it moving when it strikes the ground?

4 Answer? (give answer in mos)

$$
\text { S:Ux } V_{x}-30 \mathrm{~m} 1 \mathrm{~s}, g=10 \mathrm{~m} \mathrm{sc}
$$

$$
\text { F: } V_{f}=?
$$

$$
\begin{aligned}
\text { Mi. } v_{f y} & =\left(\left(\mathrm{ours}_{s}\right)\left(.8 a_{s}\right)\right. \\
& =8.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& 3 U_{f}=\sqrt{8.9^{2}+30^{2}} \\
& U_{x} U_{f} U_{c_{s}}=31.3 \mathrm{~m}(5)
\end{aligned}
$$

A football is thrown horizontally at $30 \mathrm{~m} / \mathrm{s}, 4$ m above the ground. How far does it travel in the horizontal direction before it hits the ground?
3 Answer? (use g=10 mos ${ }^{2}$ and give answer in m

$G: V_{x}=30 \mathrm{~m} / \mathrm{s}, y=4 \mathrm{~m}$
$g=10 \mathrm{~m} / \mathrm{s}^{2}, v_{b y}=0$
$F: x=$?
$E^{\prime} \cdot x=v_{x} t, y=\frac{1}{2 g} t^{2}+x y t$
$\begin{aligned} M: y & =\frac{1}{2} g t^{2} \\ 2 y & =g t^{2}\end{aligned}$
$t^{2}-2 y / g$
$t=\sqrt{2 y / g}$
$=\sqrt{\frac{2(4)}{10}}=.89 \mathrm{~s}$

$$
u_{x}=\left(30 \mathrm{~m}(\mathrm{~s})\left(.84_{\mathrm{s}}\right)\right.
$$

$$
=
$$

A football is kicked at an angle to the horizontal of 37 degrees with a
velocity of magnitude $20 \mathrm{~m} / \mathrm{s}$.
velocity of magnitude $20 \mathrm{~m} / \mathrm{s}$. Calculate
(a) the maxim
(a) the maximum height
$\begin{aligned} G: V_{x} & =20 \cos 37^{\circ}-96 \mathrm{~m} / \mathrm{s} \\ V_{a} & =20 \sin 37^{\circ}-12 \mathrm{~m} / \mathrm{s}\end{aligned}$
$F: y=$?
$E: v_{y} y^{2}=2 g_{y}+v_{0 y}{ }^{2}$

$\begin{aligned} y=\frac{v_{a} y^{2}}{-2 y} & =\frac{\left(12 \frac{\mathrm{~m}}{)}\right)}{-2(-10 \mathrm{~m} / \mathrm{s})} \\ & =7.2 \mathrm{w}\end{aligned}$
$F: t=$?
$E: V_{f_{1}}=g t+V_{0 y}$
M: $t=\frac{v_{f_{y}}-v_{\text {oI }}}{g}$
$t-\frac{-12 \mathrm{~m} / \mathrm{s}^{-}(12 \mathrm{~m} / \mathrm{s})}{-10 \mathrm{~m} / \mathrm{s}^{2}}$

A football is kicked at an angle to the horizontal of 37 degrees with a velocity (c) how far way it hits the ground

$$
\begin{aligned}
& G: v y=16 \mathrm{~m} / \mathrm{s}, v_{0 y}=12 \mathrm{mls} \\
& y=0, v_{\mathrm{fy}}=12 \mathrm{~m} / \mathrm{s} \\
& t=2.4 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
F x & =? \\
E: x & =v_{x} t \\
\text { M: } x & =(16 \mathrm{~m} / \mathrm{s})(2.4 \mathrm{~s}) \\
& =38.4 \mathrm{~m}
\end{aligned}
$$

