Chapter 4 - Dynamics - WHY things move
Newton has THREE laws of motion

1st Law

Law of Inertia - An object in CONSTANT motion remains in CONSTANT motion and an object at rest remains at rest UNLESS acted on by an OUTSIDE, NET FORCE

Inertia = resistance to change in motion
Outside force = force from another object
Net force = total sum of all outside forces acting on object

Check Q 1---
How much force is needed to keep a ball throwr in space moving after being thrown?

1 A book is sitting on the table, which statement is true?
A There are no forces acting on the book so it remains at rest

B There is only gravity acting on the book
C The table is keeping the book at rest.
D There are two forces on the book.

Which will hit the ground first, the book or the pen?

Newton's 2nd Law of Motion--

The acceleration of an object is DIRECTLY proportional to the net force and INVERSELY proportional to its Mass

Newton's 3rd Law of Motion -

For every action there is an equal and opposite reaction
Action Reaction Pairs

1) Come in pairs
2) NEVER cancel

3) Act on different object

Newton's Law of Gravity (NOT a law of motion)

Universal Gravitational $E Q$
 $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$ $=\rightarrow$ an dy Earth
$r=$ cist between centers
Nickname: Green m\&m's are square

Inverse square law...as r increases F decreases by INVERSE SQUARE

R	F
$x 2$	$x 1 / 4$
$x 4$	$x^{1 / 16}$
$x 1 / 2$	x^{4}
$x 1 / 3$	x^{9}

Force (N)

2) Normal Force $=\mathrm{F}_{\mathrm{N}}=\mathrm{N}$
*** Alway perpendicular to surface

3) Frictional Force $=\mathrm{F}_{f}=f$
*** Always opposes motion $\quad \mu=m u$
*** Always parallel to surface
$f \leq \mu N \ldots$ where $\mu=$ coefficient of friction $=$ "stickiness of surface---independent of weight
frepends on weight...more weight same μ more friction

Two types of friction

1) Static...
**starting to move or not moving
** if NOT moving $\mathscr{F}_{s}<\mu_{\mathrm{s}} \mathrm{N}$
** if JUST starting $\tilde{f}_{s}=\mu_{s} N$
2) Kinetic
** must be moving
** $\frac{f}{\frac{1}{k}}=\mu_{k} N$ (can't be more or less)
${ }^{* *} f_{k}<f_{s} .$. harder to start then to continue

Free body diagrams (FBD) of objects:

6 How does the mass of an object on an incline affect the acceleration of the object?

A directly...higher mass = higher acceleration
B inversely...higher mass = lower acceleration
C no affect

$$
F_{n e t}=F_{a}-f=m a
$$

$m g \sin \theta-\mu m g \cos \theta=\mathrm{ma}$ ***note the m's cancel! ${ }^{* * *}$

if JUST starting down ramp, $\mathrm{a}=0$ so...
$m g \sin \theta=\mu \mathrm{mg} \cos \theta$ $\tan \theta=\mu_{\mathrm{s}}$

5) Tension - T
*** represents Tension in rope or string NOT applied force

(2) Ry lFg $_{\text {noneq }}$

c) 200 N

Tug of War---

\qquad

A box is on an incline and starts . to slid. whom the angl is (10.) What is s, N ?
$C: \theta-10^{\circ}$
$F: \mu_{s}=?$
$E: \mu_{s}=\tan \theta$
$M: \mu_{s}=\tan 18$
$A:(18)$

Equilibrium problems $\mathrm{a}=0 \quad$ Fret $=0$

1) Draw a FBD
2) Set all the up forces = to all the down forces
3) Set all the left forces = to all the right forces
4) Solve

The 500 g carts is
accelerating at $2 \mathrm{~m} / \mathrm{s}^{2}$
when 200 g is added to the
hangar. What is the friction
on the table?

If $m_{1}=10 \mathrm{~kg}$ and $m_{2}=40$ kg and the angle is 20 degrees. What is the T in the string and what is the acceleration of the system if there is no friction?

