Ch 2 Review

$$
\text { magnitudz = number/size not } 1
$$

Free Fall

$$
\begin{aligned}
& a=-\operatorname{lom}\left(s^{2}\right. \\
& \mathrm{v}_{\mathrm{f}} \text { at top }=\bigcirc \\
& -v_{f} \text { at bottom }=v_{0} \text { at bottom } \\
& t_{\text {up }}=t_{\text {down }} \\
& \text { vo }
\end{aligned}
$$

READ carefully... where do you start? where do you end? is $\mathrm{a}=-10 \mathrm{~m} / \mathrm{s}^{2}$

NEVER assume!!!

Equations:

No acceleration:
$\overline{\mathrm{V}}=\mathrm{x} / \mathrm{t}$ (THIS IS AVERAGE V!!!)
Acceleration:

$$
\begin{aligned}
& x=1 / 2\left(v_{o}+v_{f}\right) t \\
& \left.\bar{v}=1 / 2\left(v_{0}\right)+v_{f}\right) \text { (THIS IS AVERAGE V!!!) } \\
& x=1 / 2 a f z+v_{p} t+x_{0}\left(N O v_{f}\right) \\
& \mathrm{v}_{\mathrm{f}}=\mathrm{at}+\mathrm{v}_{\mathrm{o}}(\mathrm{NO} \mathrm{x}) \\
& v_{f}{ }^{2}=2 a x+v_{0}{ }^{2}(N O t)
\end{aligned}
$$

Graphs

Position time:

 slope = velocity $v \left\lvert\, \begin{aligned} & a=0, \text { inst } v \quad t \\ & a_{1} f_{1} A_{1} \\ & x=A_{1} t A_{2}\end{aligned}\right.$ slope $=$ acceleration R area $=$ displacement

Acceleration Time: area $=$ final velocity

