

Work $=$ a force that causes displacement along axis of force
 > Work is a SCALAR
 > Can only be + or -...direction DOES NOT MATTER

$+\mathrm{W}=$ displacement and force in SAME direction

- W = displacement and force in OPPOSITE direction

Types of Energy

1. Gravitational Potential Energy

- $\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}$
- STORED energy
- Due to position

2. Kinetic Energy

- KE = $1 / 2 \mathrm{mv}^{2}$

mainum inate emengy
Minim gmational
pecheral
eremy
- Energy due to MOTION

Bowling Ball Demo

Work Energy Theorem

Outside net work can cause a change in KE

$$
W=\Delta K E=1 / 2 m\left(v_{f}^{2}-v_{0}^{2}\right)
$$

Conservative Work $=\mathrm{U}_{\mathrm{g}}$ and KE
$>$ Can be + or -
> Get energy back when return to start
Nonconservative Work $=$ fx and $R x$
> Always takes away energy = -
> Never get energy back, negative when moves away or comes back

Full energy conservation equations

$$
\mathrm{W}+\mathrm{KE}_{\mathrm{o}}+\mathrm{U}_{\mathrm{go}}=\mathrm{KE}_{\mathrm{f}}+\mathrm{U}_{\mathrm{gf}}+\mathrm{fx}+\mathrm{Rx}
$$

OR

$$
\mathrm{W}-\mathrm{fx}-\mathrm{Rx}=\Delta \mathrm{U}_{\mathrm{g}}+\Delta \mathrm{KE}
$$

Examples:

A girl jumps off a 2 m tall cliff into the water. What is her velocity when she lands?

A 80 kg man runs up a 12 m tall ladder, how much work does he do to reach the top?

$$
\begin{array}{ll}
G: m=80 k_{z}, h=12 \mathrm{~m} & E \\
F: W=? & H g \\
E: W=U_{g f} \\
M: W=m_{g} \\
A: W:(80 \mathrm{~kg} \\
A
\end{array}
$$

