

equivalents	asurements	
$x = \theta$ theta	Θ	Q
v = W Omega	ω	
a=α alpha	X	

Big 5 Kinematic EQ's

r=l

 $\sum_{x \to \infty} \sum_{x \to \infty} F_{x} - F_{w} - F_{sf} = 0$ $\sum_{x \to \infty} \sum_{x \to \infty} F_{y} = F_{w} + F_{p} - F_{g} = 0$ $\sum_{x \to \infty} \sum_{x \to \infty} F_{s} (\frac{1}{2} \cos \alpha)$ $= F_{w}(L \sin \alpha)$ $= F_{sw}(L(\cos \alpha))$

Greek eo	quivalents in dynamics
F _{net} >	τ

m ---> I

Sample Problem A pulley with $\frac{1}{2} + \frac{2 \log 2}{2} \log 1 = 40$ cm is rotating at 3 rad/s lifting a 2 kg mass by means of a string wound on s its portunition. How far will it lift before stopping? $G: T 4M, \alpha = 3 \log 3^2 m = 2k_g$ $G: T 4M, \alpha = 3 \log 3^2 m = 2k_g$ F: I= ? F: I
--

angular velocity \mathcal{W} $\mathbf{r} \leq \mathbf{l} \leq \mathbf{s}$ angular \mathbf{x} $\mathbf{r} \leq \mathbf{l} \leq \mathbf{s}$ acceleration \mathbf{x} $\mathbf{r} \leq \mathbf{l} \leq \mathbf{s}$ torque \mathbf{T} $\mathcal{M}_{\mathcal{M}}$ moment of \mathbf{I} $k_{\mathcal{B}} m^2$ inertia \mathbf{L} $\mathbf{l} \leq \mathbf{s}$
angular acceleration \sim $r \sim l_s^2$ torque T' N_M moment of inertia I kg m^2 $L=1$
torque <u>T</u> Nm 1-m moment of <u>1</u> kgm ⁻ apqular
moment of <u>1</u> kgm ² (=1)
angular I I
momentum