Chapter 12/14/15 Review Temperature/Heat/Gas Laws/ Thermo

Ch 12

Temperature	Heat
${ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{F}$	Cal, J
Avg KE	energy that transfers due to ΔT
$\begin{aligned} & K E^{-}=V \\ & 1 / 2 m v^{2}=3 / 2 k_{B} T \end{aligned}$	$\begin{aligned} \Delta \mathrm{Q} & =\mathrm{mc} \Delta \mathrm{~T} \\ \Delta \mathrm{Q} & =\mathrm{mLf} \\ \Delta \mathrm{Q} & =\mathrm{mLv} \end{aligned}$
$\begin{gathered} { }^{\circ} \mathrm{C}+273=\mathrm{K}^{\checkmark} \\ 1 \Delta \mathrm{C}=1 \Delta \mathrm{~K}^{J} \\ { }^{\circ} \mathrm{C} \neq \mathrm{K} \end{gathered}$	$\mathrm{c}=$ energy to increase temp Lf = energy to melt/freeze Lv = energy to vap/condense

$$
\begin{aligned}
& \Delta \theta=+\longrightarrow+m L_{f}+m, \Delta T \\
& -m l_{f} \mid m \Delta T \& \Delta Q- \\
& \text { To find } \Delta Q \text { just add up all the } Q \text { 's } \\
& \text { Watch your signs for mf and Lv... } \\
& \text { ask are you adding or taking away } \mathrm{Q} \\
& \text { as you change state }
\end{aligned}
$$

Expanision EQ's...know!!!

linear: $\Delta \mathrm{L}=\alpha \mathrm{L}_{\circ} \Delta \mathrm{T}$ volume: $\Delta \mathrm{V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T}$

Conduction and Diffusion..know!!!

$$
\begin{aligned}
\Delta \mathrm{Q}=\frac{\mathrm{kA} \mathrm{\Delta} \mathrm{\Delta Tt}}{\mathrm{~L}} & H=\frac{\mathrm{L} A \Delta T}{L} \\
m=\frac{\mathrm{DA} \Delta \mathrm{Ct}}{\mathrm{~L}} & H=\frac{\Delta Q}{\mathrm{~L}}
\end{aligned}
$$

Ch 14- Gas Laws
$N=$ \# of particles $\quad\left(k_{B}\right) \quad K E$ $\mathrm{n}=\#$ of moles $\quad(R)$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ particles/mole

KNOW and UNDERSTAND

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{PV}=\mathrm{nRT} \\
\mathrm{PV}=\mathrm{NkT} \\
\frac{\mathrm{PV}}{\mathrm{~T}}=\frac{\mathrm{PV}}{\mathrm{~T}}
\end{array}\right.} \\
& \text { These are on table of info.... } \\
& \mathrm{R}=8.31 \mathrm{~J} / \mathrm{molK} \quad \mathrm{k}_{\mathrm{B}}=1.38 \times 10^{23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Chapter 15 - Thermo

$$
\begin{aligned}
U & =3 / 2 n R T=3 / 2 N k T \text { ALWAYS!!! } \\
\triangle U & =3 / 2 n R \cong T
\end{aligned}
$$

Oth Law

IF
A in equilibrium with B
B in equilibrium with C
THEN
A in equilibrium with C

> 1st Law gas= system $\begin{aligned} & \Delta U=\Delta Q+W \\ & \text { an gas, for the gas } \\ & \text { add heat }=+\Delta Q \quad \text { (Opposite }=\text { surroundings) } \\ & \text { remove heat }=-\Delta Q \\ & \text { compress gas, decrease } V=+W \text { on system } \\ & \text { expand gas, increase } V=-W \text { on system }\end{aligned}$

Isobaric

Constant P

$\Delta U=\Delta Q+W$
$\Delta V=-\Delta Q+w$
$W=-P \Delta V=-n R \Delta T \quad 3 / 2=5 / 2 \Delta Q^{\circ} \cdot-W+\Delta U$
$\Delta Q=5 / 2 n R \Delta T(-W+U)$
$\Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$
$\mathrm{Cp}=5 / 2 \mathrm{R}$
Isochoric constant V $p \underbrace{\mid}_{V}$ W = 0 $\Delta \mathrm{Q}=\Delta \mathrm{U}$ $\Delta Q=\frac{3 / 2}{3 n} n \Delta T$
$\Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$ $C v=\frac{3 / 2}{23} 8$

Isothermal constant T
$\Delta U=0$
$W=-\Delta Q$
$\rho \underbrace{V_{V}^{T}}_{V}$

Adiabatic

Constant $Q(\Delta Q=0)$

$\Delta \mathrm{U}=\mathrm{W}$
$W=3 / 2 n R \Delta T$

P-V graphs
area $=W$ (sign OPPOSITE $\Delta V) \quad H_{2} \quad \mathrm{He}$ Can use $P V=n R T$ to find n or T

Cannot assume $\mathrm{n}=1$!!!! but can leave it and hope it cancels:)

$$
\begin{aligned}
& P V=n R T \\
& T=\frac{P V}{n R} \\
& n=\frac{P U}{T R}
\end{aligned}
$$

3न्d Law - Entropy

$$
\Delta \mathrm{S}=\frac{\Delta \mathrm{Q}}{\mathrm{~T}}
$$

***remember T is in K
$\wedge S=\wedge$ disorder
$\underset{\substack{\text { ice } \\ \text { cube }}}{\text { melting }} \Delta S=\frac{\hat{m}_{f}}{273}$

Heat Engines

ALL: $e^{-}-\frac{W}{Q_{H}}$
$e=1-Q_{C} / Q h$
$Q h=W+Q c$

Carnot: = mostleffeciul
$\mathrm{e}=1-\mathrm{Tc} / \mathrm{Th}$
Tc/Th = Qc/Qh

1) C
2) D
3) A
4) 0
5) B
C) E

714
8) D
9)D
10) D

