Chapter 29 - Particle Physics

Photon = particle of light energy

- Given off in "packets" of h
- $\mathrm{h}=$ Plank's constant $=6.626 \mathrm{x}$

Energy of one photon $=$ Ep = hf $10-34 \mathrm{Js}$

Compton Effect and Photon Momentum

- Light waves can "collide" with electrons so as to CHANGE their frequency
- Like momentum collision
- higher $\mathrm{f} x$-ray before....lower $\mathrm{f} x$-ray after...since momentum is
 conserved....some momentum is transferred to the dislodged electron
$p_{\lambda 1}=p_{p}+p_{\lambda}-----$ conservation of momentum
From ch $28 \ldots . E_{p}=m c^{2}$
From ch 29... $E_{p}=h f$
so... $p=m v=m c^{2} / c=h f / c=h / \lambda$
this means light has momentum!!!!

Wave-particle duality theory-
This means particles can act like waves and waves can act like particles!
wave as particle $\Rightarrow p=h / \lambda$
 particle as wave = deBroglie wavelength

$$
\Rightarrow \lambda=h / p
$$

Heisenberg's Uncertainty principle

- can't observe a particle without interacting and changing something about particle
- uncertainty in momentum OR position OR energy OR time

