T

Chapter 11 Fluids

Fluid - any substance that can be compressed with added pressure

ex: air and water

Г

Mass Density = rho = $ ho$
Mass per volume (for fluids AND solids)Can change for a given liquid due to pressure
$\rho = m/V$ m = mass (kg), V = volume (m ³) units = kg/m ³
<pre>Specific Gravity = sg = density compared to water NOT UNITS • sg = 1 for waterif sg> 1 = sinks, if sg < 1 = floats</pre>

November 12, 2012

(for viscous fluid "thick")

- key concepts (Q = vol flow rate)
- * more viscous = slower flow
- * bigger area = faster flow
- * bigger ΔP = faster flow

$$\begin{split} \eta &= \text{eta} = \text{coefficient of viscosity} \\ (\text{units} = \text{Pa s} = \text{Poisse} = \text{P}) \\ \text{ideal fluid} = 0 \text{ P} = \text{infinite flow} \\ \text{rate} \\ \text{L} &= \text{length of "pipe"} \\ \text{R} = \text{radius of end of "pipe"} \end{split}$$