Chapter 12 - Temperature and Heat

Demo - bimetallic strip

Thermal Expansion

Most object/samples expand as temperature increases

Materials DO NOT expand at same rate

WHEN THE TEMPERATURE OF THE PIECE OF METAL IS INCREASED AND THE METAL EXPANDS, WILL THE GAP BETWEEN THE ENDS BECOME NARROWER, OR WIDER, OR REMAIN UNCHANGED?

Water is the only material that when heated actually contracts
Water is MOST dense at $4^{\circ} \mathrm{C}$
From 0 to $4^{\circ} \mathrm{C}$ water EXPANDS

Check Questions:

1) What is the temperature of water at the bottom of Lake Erie?
2) What is the temperature of water at the bottom of Lake Tahoe?
3) What is the temperature of water at the bottom of a puddle?

Equations for Thermal Expansion

$\Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T}$
where $\alpha=$ coefficient of linear expansion
$\Delta \mathrm{V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T}$
where $\beta=$ coefficient of volumetric expansion

Heat- energy that flows from higher temperature to lower temperature due to a temperature difference

- Heat IS NOT Temperature
- Demo - paper cup and water, hot and cold water

Equation

$\Delta Q=m c \Delta T$

$Q=$ heat
units $=$ Joules $=\mathrm{J}$
c= specific heat = energy needed to raise or lower temperature of 1 g of the substance $1^{\circ} \mathrm{C}$
****how fast or slow material heats or cools
units $=\mathrm{J} / \mathrm{kgK}{ }^{* * * *}$ note $/ \mathrm{C}$ or $/ \mathrm{K}=$ SAME!!!
$\mathrm{C}_{\text {water }}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}=4180 \mathrm{~J} / \mathrm{kgK}$
This is VERY high!!!
Most metals have a very low c (less than $1 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)

Demo - peanuts calories

Check Q's:

1. Why is San Francisco always cool and about the same temperature?
2. Why is a desert VERY cold at night and VERY hot during the day?

States of matter
latent heat absorbed latent heat absorbed

Latent Heat

As materials change state, they do NOT change temperature
Energy is being absorbed or released
This energy is stored in the molecules = latent heat

Check questions:

1. Why do you feel cold when you stand on the pool deck on a windy day?
2. Why do you feel warm when you stay in the shower stall?
3. Why does rubbing alcohol feel cold when placed on your skin?

$\Delta \mathrm{Q}=\mathrm{mL}_{\mathrm{t}}$
$L_{f}=$ latent heat of fusion
$\Delta \mathrm{Q}=\mathrm{mL}_{v} \quad \mathrm{~L}_{\mathrm{v}}$ = latent heat of vaporization

Check Questions:

1) A piece of iron at $100^{\circ} \mathrm{C}$ is placed in 100 ml of water at $20^{\circ} \mathrm{C}$
a) How does the temperature change of the iron compare to the temperature change of the water?
b) How does the heat change of the iron compare to the heat change of the water?

What would the equation look like for the proceeding question?

Water freezes at \qquad and boils at \qquad The latent heat of
vaporization for water is $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ and the latent heat of fusion for water is $3.35 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. How much heat is absorbed as 5 kg of ice at $-20^{\circ} \mathrm{C}$ changes to 5 kg of steam at $110^{\circ} \mathrm{C}$?

Chapter 13.2 - conduction

The rate at which heat travels through a solid

> | $Q=\frac{k A \Delta T t}{L}$ | $\begin{array}{l}k=\text { thermal conducitivty } \\ \text { constant }\left(\mathrm{J} /\left(\mathrm{sm}^{\circ} \mathrm{C}\right)\right)\end{array}$ |
| :---: | :--- |

$$
\mathrm{t}=\text { time }(\mathrm{s})
$$

Chapter 14 - Ideal Gas Law
 Chemistry review
 Mole $=$ unit of measurement
 1 mol of gas at STP $=6.02 \times 10^{23}$ particles $=$ 22.4 L
 STP $=1 \times 10^{5} \mathrm{~Pa}$ and 273 K

Atomic mass unit $=\mathrm{u}=$ number on periodic table $=$ mass per mole
$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$
Molecular mass = add atomic mass of atoms
ex. water $=\mathrm{H}_{2} \mathrm{O}=2(1 \mathrm{u})+1(16 u)=$ 18ublmoh

$$
\begin{aligned}
& =1 \mathrm{~g} / \mathrm{mol} \\
& =18 \mathrm{l}_{2} / \mathrm{knol}^{1}
\end{aligned}
$$

$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number $=6.02 \times 10^{23}=$ particles/mol
$\mathrm{n}=\#$ of moles $=\mathrm{N} / \mathrm{N}_{\mathrm{A}} \quad \mathrm{N}=$ \# of particles
Sample Q
How many moles are in 140 g of N_{2} gas at STP?

Ideal Gas Law	
All "ideal gases" obey the following equations	
$\mathrm{PV}=\mathrm{nRT}$	$R=$ ideal gas contant $=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
or	
$\mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} T$	$\mathrm{k}_{\mathrm{B}}=$ Boltzman's constant $=\mathrm{R} / \mathrm{N}_{\text {A }}$
$P V=k_{B} T$	$=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \ldots .$. use with particles

Ideal Gas Law can be modified if...
Constant P = Charles' Law
$\mathrm{V} / \mathrm{T}=\mathrm{V} / \mathrm{T}$
Constant T = Boyle's Law
PV = PV
Constant V = Guy-Lusaac's Law
$\mathrm{P} / \mathrm{T}=\mathrm{P} / \mathrm{T}$
Contant n
$\frac{P V}{T}=\frac{P V}{T}$

Internal Energy
= stored energy
object CANNOT contain heat
They DO contain stored energy (internal energy)
$\mathrm{U}=\mathrm{KE}+\mathrm{U}$ of molecules = internal energy

Internal Energy and KE of gasses
$K E=1 / 2 m v^{2}$ AND KE is proportional to Temperature
$P V=N k T$ so let's put these together

$P=F / A$ and $F=\Delta p / t$

As molecules hit the box they change mometum and exert a force which causes Pressure within a given volume
$t=2 L / v$ and $V=L^{3}$ and $\Delta p=-m v-m v=-2 m v$ and there are THREE directions so only hit $1 / 3$ of time

$$
\text { so....PV } \frac{\mathrm{PV}}{3}=\frac{-2 \mathrm{mv}\left(\mathrm{~L}^{3}\right)}{3 \mathrm{tA}}=\frac{m v^{2}}{3}
$$

however...there are N particles at any given time and they are moving at vrms (root mean square) ...like an average so...
$P V=m v^{2} / 3=2 / 3 N\left(1 / 2 m v_{m s}{ }^{2}\right)$
this means...
$\mathrm{PV}=2 / 3 \mathrm{~N}(\mathrm{KE})=$ NkT rearranging gives
$K E=1 / 2 \mathrm{mv}^{2}=3 / 2 \mathrm{kT}$

3/2NkT = 3/2nRT = Internal Energy ALWAYS!!!!!
$\mathrm{U}=3 / 2 \mathrm{nRT}$
$U=3 / 2 N k T$
****remember all equations with T MUST be in Kelvin*******

Fick's Law of Diffusion
Like conduction but through a gas

$$
\begin{array}{ll}
\mathrm{m}=\frac{\mathrm{DA} \Delta \mathrm{Ct}}{\mathrm{~L}} & \begin{array}{l}
\mathrm{D}=\text { diffusion constant }\left(\mathrm{m}^{2} / \mathrm{s}\right) \\
\mathrm{C}=\text { concentration }\left(\mathrm{kg} / \mathrm{m}^{3}\right)
\end{array} \\
\mathrm{t}=\text { cross } & \begin{array}{l}
\mathrm{t}=\text { time } \\
\text { regions of various } \\
\text { concentrations }
\end{array} \\
\text { sectional } & \begin{array}{ll}
\text { cone } \\
\text { area } & \text { mass flow }(\mathrm{m})
\end{array} \\
\sim
\end{array}
$$

