Chapter 19 - Electric Potential

Electrical Potential Energy	Electrical	
Potential	Electrical Potential Difference	
Total Energy, like gravitational potential energy	Energy due to position, stored, energy per) charge, due to charged particle (s) creating field	Difference in potential between pointer like grave. pot energy, makes charged particles move, voltage"
UR	V	$\Delta \mathrm{V}$
units $=\mathrm{J}$	Units $=\mathrm{J} / \mathrm{C}=$ volts $=\mathrm{v}$	Units $=\mathrm{J} / \mathrm{C}=$ volts $=\mathrm{v}$
$\Delta \mathrm{Ve}=(\Delta \mathrm{V}) \mathrm{q}$	$\mathrm{V}=\mathrm{Ue} / \mathrm{q}$	$\Delta \mathrm{V}=\mathrm{Vb}-\mathrm{Va}$

NOTE: ALL ARE SCALARS!!!

Equations for Xe and V for a POINT CHARGE
$\mathrm{V}=$ energy/charge $=$ Work/charge
$W=F x=\left(k q q / r^{2}\right) r=k q q / r=U e$
$\mathrm{W} / \mathrm{q}=\mathrm{kqq} / \mathrm{rq}=\mathrm{kq} / \mathrm{r}=\mathrm{V}$

signs matter!!! need to think...is it gaining or losing energy? is field doing work on the particle or is the particle doing work on the field?

$-\mathrm{W}=\Delta \mathrm{U}_{\mathrm{e}}$	
$-\mathrm{W}=\mathrm{q} \Delta \mathrm{V}$	$+\mathrm{V}=+\mathrm{q}$
$-\mathrm{V}=-\mathrm{q}$	

$-\mathrm{V}=-\mathrm{q}$

Electrical Energy vs Electrical Potential

V is determined by a +1 C test charge; it is INDEPENDENT of a second charge; it DEPENDS only on charge creating field

[^0]U_{e} is determined when another charged particle is placed at a point, it is DEPENDENT on a second charge
$U_{e}=(\mathrm{kq} / \mathrm{r}) \mathrm{g}=\mathrm{kqq} / \mathrm{r}$

Work

Increasing the U_{e} of a charge requires +W ON the particle

$$
\begin{array}{ll}
-\mathrm{W}=(\Delta \mathrm{V}) \mathrm{q}=-\Delta \mathrm{U}_{\mathrm{e}} & \text { part;ck } \\
\begin{array}{ll}
-\mathrm{W}=\text { decelerates } & \text { q takes }-\mathrm{AW} \\
+\mathrm{W}=\text { accelerates } &
\end{array}
\end{array}
$$

Electron Volt = unit of energy NOT potential
$1 \mathrm{eV}=$ energy of ONE electron moving through $1 \mathrm{~J} / \mathrm{C}$ potential difference
$1 \mathrm{eV}=(1 \mathrm{~J} / C) \mathrm{q}_{\mathrm{e}}=1.6 \times 10^{-19} \mathrm{~J}$

Demo - van de Graaf and lightning and light

Electric potential and energy between parallel plates
 E field is uniform

$\Delta \mathrm{V}$ is difference in distance between two points relative to plates along E field line

Highest V = closest to + plate
V changes uniformly with distance

$\mathrm{W}=\mathrm{Fx}=\mathrm{Eqx}$. .where $\mathrm{x}=$ dist between equipotential lines

But $\mathrm{W}=\Delta \mathrm{Vg}$ and $\mathrm{x}=\Delta \mathrm{d}$ so...

$$
\Delta \mathrm{V}=\mathrm{E} \Delta \mathrm{~d}
$$

$$
E=\frac{\Delta V}{\Delta r}
$$

but usually write
$\Delta V^{-} \cdot E v$
V = Ed

Equipotential Lines

"lines" in an E-field with equal potential

For point charge
They are concentric circles

For parallel plate
They are parallel lines

Capacitor

- A device that holds charge
- Consists of conductor parallel plates sandwiching an insulator = dielectric

C= capacitance $=$ amount of charge
device can hold per potential difference
units $=$ Farads $=F$

$\mathrm{q}=\mathrm{CV}$ (where V is really $\Delta \mathrm{V}$)

[^0]: $\mathrm{V}=\mathrm{kq} / \mathrm{r}$

