Chapter 20 - Current Electricity

To create current you need:

Demo - light bulb gray/ white demo

Statics- charge moves all at once...either charged or discharged
 continue to move

Current

- I
- Coulombs per sec Electricty is
a flow of
electrons
around a
circuit
$\rightarrow \rightarrow \rightarrow>$
- Like water moving down a river
- Current and charge are ALWAYS conserved
- Conventional current $=+$ charges**** *

> battery
« creates Direct Current (DC)
« + side of battery = top of hill
« - side of battery = bottom of hill

Circuit A

Potential Difference

- Voltage
- Supplied by
> outlet
\qquad
\mp furem
« creates Alternating Current (AC)

OR.....

Check questions??

1) How many electrons does PG\&E provide for you every day?
a) $1,000,000$
b) $1,000,000$
c) too many to count
d) none

Soldier line up demo

Ohm Jokes.....

Resistance is like drinking a milkshake through a straw

- Big straw gives less resistance
- Small straw gives high resistance
- Long straw gives high resistance
- Short straw gives less resistance

$$
R=\rho L / A \quad \begin{aligned}
& \text { where } \\
& \rho=\text { resistivity } \\
& L=\text { length of wire } \\
& A=\text { area of end of wire }
\end{aligned}
$$

Resistance

- resists the flow of electrons/current
- due to devices and wires
- units $=$ ohms $=\Omega$ RESISTANCE OHM

Ohm measured the current through a resistor by varying V and found....

This relationship is known as
Ohm's Law
He named the slope resistance
$\mathrm{R}=\mathrm{V} / \mathrm{I}$
$\mathrm{V}=\mathrm{IR}$

According to Ohm's Law resistance stays constant....BUT...really it changes with temperature

$$
\begin{aligned}
& \rho=\rho_{\mathrm{o}}\left(1+\alpha\left(\mathrm{T}-\mathrm{T}_{\mathrm{o}}\right)\right) \\
& \hline R=R_{\mathrm{o}}\left(1+\alpha\left(\mathrm{T}-\mathrm{T}_{\mathrm{o}}\right)\right)
\end{aligned}
$$

Most materials have $\mathrm{a}+\alpha$ so R increases with temperature

Note: That is why bulbs burn out most offen when you first turn them on...explain....

Measurements in circuits

Series Circuits

1. Series= current goes from one resistor/device to the next in a "series"
2. ONE path
3. SAME current
4. SPLITS voltage

Demo - Phet Circuits
http://phet.colorado.edu/en/simulation/circuit-construction-kit-dc

Equations for Series:

$I_{t}=I_{1}=I_{2}=I_{3} \ldots$. Since $q=C V$ and $q=I / t$
$V_{t}=\Sigma V_{i}$
Since $V=I R$
$\mathrm{IR}_{\mathrm{t}}=\Sigma \mathrm{IR}_{\mathrm{i}}$
so...l's cancel and
$\mathrm{R}_{\mathrm{t}}=\boldsymbol{\Sigma} \mathrm{R}_{\mathrm{i}}$
$V=q / C$
$q / C_{t}=\Sigma q / C_{i}$
so....the q's cancel and
$1 / C_{t}=\Sigma 1 / C_{i}$

Check question??

What happens to the resistance as you put in more and more resistors? Why?

Parallel Circuits

1. Parallel= current splits between resistors so it move "parallel" to each other
2. Multiple paths
3. SAME voltage
4. SPLITS current

Equations for Parallel:

| $\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3} \ldots .$. Since $\mathrm{q}=\mathrm{CV}$ and $\mathrm{q}=\mathrm{I} / \mathrm{t}$
 $\mathrm{C}_{\mathrm{t}} \mathrm{V}=\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{V}$
 $\mathrm{I}_{\mathrm{t}}=\Sigma \mathrm{I}_{\mathrm{i}}$
 so....the V's cancel and
 Since $\mathrm{I}=\mathrm{V} / \mathrm{R}$ $\mathrm{C}_{\mathrm{t}}=\Sigma \mathrm{C}_{\mathrm{i}}$
 $\mathrm{V} / R_{\mathrm{t}}=\Sigma \mathrm{V} / \mathrm{R}_{\mathrm{i}}$
 so...V's cancel and
 $1 / \mathrm{R}_{\mathrm{t}}=\Sigma 1 / \mathrm{R}_{\mathrm{i}}$ |
| :--- | :--- |

Check Q???

1. What happens to the resistance of a circuit as more devices are connected in parallel?
2. Why would you use a series circuit?
3. Why would you use a parallel circuit?

Sample circuits....find the total/effective resistance for.....

Fuse - a device that "burns out" when too much current flows to protect the circuit

Circuit breaker $=$ as switch that "flips" to off when too much current flows

Grounding - provides a path to the "ground" so there is not a build up of charge that can "spark" if there is a large potential difference ex. 3rd prong in plug (other two flip between + and - since it's AC)

Kirchoff Rules - rules based on conservation of charge and conservation of energy

Loop Rule: The sum of the energy drops and rises is always ZERO (or the voltage drops $=$ the voltage rises)

$$
\begin{array}{ll}
\Sigma \mathbf{V}_{\text {rises }}=\Sigma \mathbf{V}_{\text {drops }} \\
\text { Or } & V_{\text {rises }}=+ \\
\Sigma \mathbf{V}=0 & V_{\text {drops }}=-
\end{array}
$$

Point or Junction Rule -- The sum of all the currents going into a point/junction must equal the sum of all the currents leaving the pojnt/junction

Determining if potential differences is + or -
If current goes "right way" If current goes "wrong way"
batteries $=+\mathrm{V} \quad$ batteries $=-\mathrm{V}$
resistors $=-\mathrm{V} \quad$ resistors $=+\mathrm{V}$

Ex.

For this one...determine loops and set up equations
A series-parallel combination circuit

