Review Notes Ch 21/22

Magnetism:

1) B-field
2) Caused by magnetic domains so never have monopole
3) arrows point from N to S

Attracting Poles

Magnetism causes forces on MOVING charge particles (only at RIGHT angles)

1) Can do NO work, can NOT increase v
2) $F_{B}=q v B \sin \theta$ (single charged particle)
3) $F_{B}=$ BILsin日 (wire in field)
4) RHR \#1 FLAT!!!

fingers $=B$, thumb $=I$, palm $=$ force
(left hand for NEGATIVE charges only!!!!)

Moving charged particles in magnetic

 fields:1) Follow circular or spiral pattern

2) Use equation to determine signine q, m, or v for a given particle based on radius of circle

B-fields around wires, loops, and solenoids

1) Wire $=$ circular, $B=\mu_{0} / 12 \pi r(r=r a d r s)$ distance
2) Loop = one side N, one side $S, B=N \mu_{0} / 2 r$ ($r=$ distatince,N
= \# of loops)
BOTH use RHR\# 2, thumb $=1$, fingers $=\mathrm{B}$, fingers CURVE!!

3) Solenoid = bar magnet, $B=n \mu_{0} \mathbf{I}(n=$ turns/length $)$ Modified RHR \#2, fingers = I, thumb points to N pole

Motor Effect

1) Due to moving current in wire experience force/torque in magnetic field
2) Changes electrical energy in to mechanical energy
3) NIA $=$ magnetic moment

Basic EM induction concepts:

1) Moving B or E fields induce each other
2) B, E, and v are always 90 deg to each other
3) Magnetic flux MUST change to induce emf (emf does not mean current, just emf = the push)

Magetic Flux

1) $\Phi=B A \cos \phi$
2) $\phi=$ angle between NORMAL of plane of loop and B -field $\left(90^{\circ}=\right.$ no flux, $0^{\circ}=$ max flux)

Faraday - rate of change of flux $=\mathrm{emf}$ $\varepsilon=-N \Delta \Phi / \Delta t \quad \varepsilon=I R$ Lenz = induced current FROM emf always OPPOSES motion

Generator

1) Due to moving loop in magnetic field
2) Changes mechanical energy in to electrical energy
3) $\varepsilon=$ NBA ω

Transformers

1) Step up or down voltage and current
2) Energy/ power stays the same (VI)
3) Must use AC

