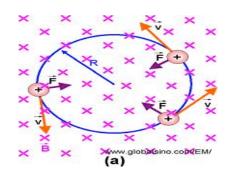

Review Notes Ch 21/22 Magnetism:

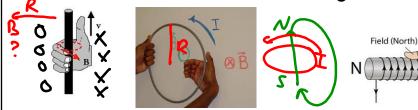

- 1) B-field
- 2) Caused by magnetic domains so never have monopole
- 3) arrows point from N to S

Magnetism causes forces on MOVING charge particles (only at RIGHT angles)

- 1) Can do NO work, can NOT increase v
- 2) F_B = qvBsinθ (single charged particle)
- 3) $F_B = BlLsin\theta$ (wire in field)
- 4) RHR #1 FLAT!!!

fingers = B, thumb = I, palm = force (left hand for NEGATIVE charges only!!!!)

Moving charged particles in magnetic fields:


1) Follow circular or spiral pattern(if already heading up or down)

- 2) $F_c = F_b$ so $mv^2/r = qvB$
- 3) Use equation to determine sign on q, m, or v for a given particle based on radius of circle

B-fields around wires, loops, and solenoids

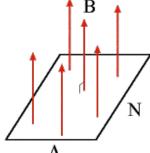
- 1) Wire = circular, $B = \mu_0 I/2\pi r$ (r = radius)
- 2) Loop = one side N, one side S, $B = N\mu_0 I/2r$ (r=distance, N = # of loops)

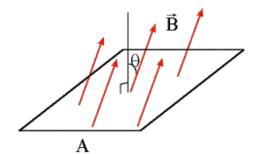
BOTH use RHR# 2, thumb = I, fingers = B, fingers CURVE!!

3) Solenoid = bar magnet, $B = n\mu_0 I$ (n = turns/length)

Modified RHR #2, fingers = I, thumb points to N pole

Motor Effect

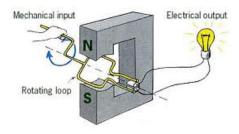

- 1) Due to moving current in wire experience force/torque in magnetic field
- 2) Changes electrical energy in to mechanical energy
- 2) NIA = magnetic moment


Basic EM induction concepts:

- 1) Moving B or E fields induce each other
- 2) B, E, and v are always 90 deg to each other
- 3) Magnetic flux MUST change to induce emf (emf does not mean current, just emf = the push)

Magetic Flux

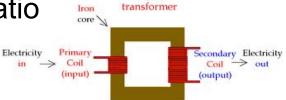
- 1) **Φ = BAcosφ**
- 2) ϕ = angle between NORMAL of plane of loop and B -field (90° = no flux, 0° = max flux)


Faraday - rate of change of flux = emf

$$\varepsilon = -N\Delta\Phi/\Delta t$$
 $\varepsilon \sim IR$

<u>Lenz</u> = induced current FROM emf always
OPPOSES motion

Generator


- 1) Due to moving loop in magnetic field
- 2) Changes mechanical energy in to electrical energy
- 3) $\varepsilon = NBA\omega$

Transformers

- 1) Step up or down voltage and current
- 2) Energy stays the same (VI)
- 3) Must use AC
- 4) Turn ratio = voltage ratio

$$N_s/N_p = V_s/V_p = I_p/I_s$$

Step up