Chapter 25 notes - Lepoesand Mirrors

Law of Reflection

The angle of incidence equals the angle of reflection

For plane mirrors image is ALWAYS erect and SAME distance behind mirror as object is in front of mirror

Demos - mirrors

Rules for Ray Diagrams for mirrors

we choose 3 rays from many because when they cross we know where the image forms*
***distance to center $=$ R, focal length $=R / 2^{* * *}$

1) Any ray going parallel to the optical axis will reflect through the focus
2) Any ray passing through the focus will reflect parallel to the optical axis
3) Any ray passing through the center of curvature will reflect back upon itself without bending

Equations for Ray Diagrams

$1 / d_{0}+1 / d_{i}=1 / f$	$d_{0}=$ distance to object $d_{i}=$ distance to image $f=$ focal length $=R / 2$
$m=-d_{i} / d_{0}=h_{i} / h_{0}$ $h_{i}=$ height of image $h_{0}=$ height of object $m * * ~ a l l ~ m e a s u r e m e n t s ~ a r e ~$ relative to optical axis***	m magnification

Sign conventions

where?	+	-
f	concave mirror/ converging device	convex mirror/ diverging device
d_{o}	ALWAYS	NEVER
d_{i}	Real image/ light crosses/ $/$ "Right" side of mirror	vight image/ coes NOT coss/ "wrong" side of mirror
m	upright/virtual	inverted/real

Summary of mirrors and images She Optics

$$
\begin{gathered}
\frac{1}{d_{i}}+\frac{1}{d_{0}}=\frac{1}{f} \\
\text { concave } \\
\text { mirror } \\
\frac{1}{2 f}+\frac{1}{f}=-\frac{1}{d i} \\
2 \sqrt{1-2}=\frac{1}{R}
\end{gathered}
$$

Convex = ALWAYS virtual and demagnified...disappears at focal point as object is moved further from lens

