Chapter 26/27 Review

Refraction

- $\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}=$ Sncll'sLaw
- due to diff n's = diff speeds
- fremains constant
- $\lambda_{\text {med }}=\lambda_{\text {vac }} / \mathbf{n}, \mathbf{V}_{\text {med }}=\mathbf{c} / \mathbf{n}$

- BIG n = slower

- if $\mathrm{n} \rightarrow \mathbf{\mathrm { n }}=$ towards normal - if $\mathrm{n} \rightarrow \mathrm{n}=$ away from normal bigger difference in $\mathrm{n}=$ more bending

Critical Angle

> must be BIG n to small n
$>\theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)$
$>\theta_{2}=90^{\circ}$
> Causes total internal reflection

Total Internal Reflection

When the angle of incidence is grenter than the citical angle, all the light undergoes seflection.

Brewster's Angle

$>\tan \theta_{\mathrm{B}}=\operatorname{tanmm}\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)$
$>$ causes light to be polarized parallel to surface
$>$ reflected and refracted rays at 90°

Apparent Depth

$>d^{\prime}=d\left(n_{2} / n_{1}\right)$

Lenses

Rules:

Equations:

1) $f \rightarrow \|$

1/di $+1 / \mathrm{do}=1 / \mathrm{f}$
2) $\| \rightarrow f_{2}$ m = -di/do = hi/ho
3) center \rightarrow straight

convex lens	concave lens
0	$\boxed{\swarrow}$
+f	-f
real or virt	virt only
any size	demag only
mag virtual	

Eyes

- Nearsighted
> long eye
> concave lens
> image in front of retina
- Farsighted
$>$ short eye
> convex lens
> image behind retina

dispersion - separation of colors due to different n's (prisms, rainbows)
 Problems with lenses

1. spherical aberration = separation of rays due to edges thinner
2. chromatic aberration $=$ colors not coming together after passing through due to differen't n's

Diffraction

- Bending due to barrier
- $\lambda \leq$ barrier
- for same barrier, $\backslash \lambda=$ more diffraction
- for same λ, smallest barrier = more diffraction

Interference

double slit	single slit	DG	Thin Film
$d \sin \theta=$ m λ (max)	Wsin $=$ $\mathrm{m} \lambda$ (min)	$\begin{aligned} & \mathrm{dsin} \theta=m \lambda \\ & (\max) \end{aligned}$	$\underset{\substack{\text { nefleclim } \\ \text { n } \\ \text { n shift }}}{ }$
$\begin{gathered} d \sin \theta= \\ (m+1 / 2) \lambda \\ (\min) \end{gathered}$	$\begin{gathered} W \sin \theta= \\ (m+1 / 2) \lambda \\ \substack{(m i n) \\ (m / 2 x)} \end{gathered}$	$\begin{gathered} d \sin \theta= \\ (m+1 / 2) \lambda \\ (\mathrm{min}) \end{gathered}$	$\bigcap_{\substack{\text { no shift }}}^{\substack{\text { reflectim }}}$
$\begin{aligned} & \text { Max = bright = "see" ligh } \\ & 1 \lambda=2 \pi=360^{\circ} \\ & M \text { Min }=\text { dark }=\text { "don't see" } \\ & \text { light }=\lambda / 2=\pi=180^{\circ} \end{aligned}$			

Resolving Power

$\theta_{\text {min }}=1.22 \lambda / D$ $1 \bigcirc$

- θ in radians
- smaller $\lambda=$ BETTER resolving power
- BIGGER D = BETTER resolving power

$\tan 9-y / L, m x=d \sin \theta$

$$
Y / L=\frac{m \lambda}{d} \sin _{\sin s h e c t} \text { eq } x \sim \frac{m \lambda}{d}
$$

