Ch 29/30/31 Review Notes <u>Ch 29</u>				
	energy	momentum	wavelength	properties
particle	1/2mv ²	mv	h/p (de Broglie)	conservation of p and E
wave	hf=hc/λ	h/λ	λ or v/f	diffraction interference
units	J or eV	kgm/s or NS	m	

Remember:

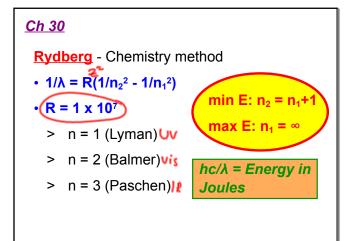
1.6 x 10⁻¹⁹ J = 1 eV

Radio \longrightarrow Gamma = $\downarrow \lambda$, $\uparrow f$, $\uparrow E$

Momentum in an Atom:

- Bohr = proportional to n (can't be 0)
- Quantum = proportional to I (can be 0)
- deBroglie = inversely proportional λ (p = h/λ)

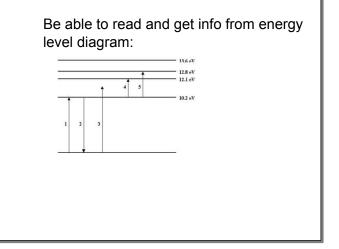
Photoelectric Effect:

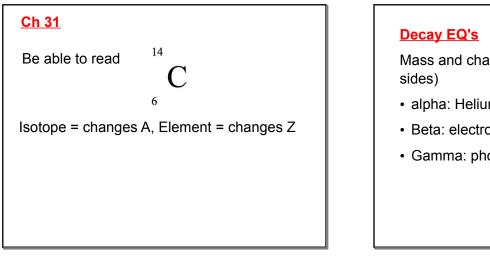

- hf = KE_{max} + W_o
- W_o = work function = unique for metal = energy to knock out electron
- KE_{max} = current, extra energy for e to move faster
- hf = energy on ONE photon

Compton Effect

- $\Delta \lambda = (h/mc)(1-cos\theta)$
- need x-ray photon energy
- h/mc = Compton wavelength for electron moving at c
- θ = angle between incident and transmitted photon/wave
- λ out > λ in (less energy out)

Heisenberg Uncertainty


- $\Delta p \Delta y \ge h/2\pi$
- $\Delta E \Delta t \ge h/2\pi$



Quantum Method $E_n = 13.6(Z^2/n^2)$ E in eV

Quantum Numbers

- n, **(**, m_s, m_s
- $l < n, |m_{l}| \le l, m_{s} = \pm 1/2$
- # of total e⁻'s = 2(2**ℓ** + 1)
- Paulie Exclusion = no 2 e's have all the same quantum #'s

Decay EQ's Mass and charge conserved (Add up on both sides) • alpha: Helium nucleus $222Ra \rightarrow 2He + 218Rn$ • Beta: electron $14^{-1}C \rightarrow 7N + 12^{-1}R$ • Gamma: photon $145R^{-1} \rightarrow 148R + 7$

<u>Mass Defect into Energy</u> (aka binding energy)

- E = ∆mc² (Joules!!!!)
- E = [Z(m_p) + (A-Z)m_n)] (u!!!)
- E/nucleon = E/A

Half Life

 $T_{1/2}$ = In2/λ (λ = DECAY CONST)

A = -Δ**N**/Δt = -λ**N** (in Bq!!!)

Conversion from N to mass:

(N nuclei)(mole/6.02 x 10²³ nuclei)(A g/mole)