

March 16, 2013

Pauli Exclusion Principle

No two electrons in the same atom can have ALL four quantum numbers the same

000

N

E

11

11 11

EX....do these combinations work??

 $n = 2, \ \ell = 1, \ m_{\ell} = 0, \ m_{s} = +1/2$ $n = 4, \ \ell = 1, \ m_{\ell} = 2, \ m_{s} = -1/2$ Angular Momentum in Quantum world

$$L = \left(\sqrt{\ell(\ell + 1)}\right) (h/2\pi)$$

This means when $\ell = 0$, L = 0 no matter what n is!!!

Number of electrons in an atom $#e = 2(2\ell + 1)$

Bohr	Quantum
L = nh/2π ≠ 0	$L = \sqrt{I(I+1)} (h/2\pi)$
	can = 0
L = same for every orbit n	L can be
	different for
	same n
orbits = circles	orbits =
	probability
	clouds = various
	shapes

LASERS

Light Amplification, Stimulated Emission of Radiation

One Color/monochromatic

In Phase/coherent

High Intensity

