Chapter 30 - Atomic Physics

Chemistry Review:
atomic \# = \# of protons = Z

atomic mass $=\#$ of protons $+\#$ of neutrons $=\mathrm{A}$
A-Z = \# of electrons
ex. ${ }_{92}^{238} \mathrm{U} \longrightarrow 92 \mathrm{p}, 92 \mathrm{n}, 238-92=146 \mathrm{e}$
3) Bohr $=$ excited electrons $=$ light $=$ atomic orbits $=$ points

4) deBroglie $=$ stable orbits $=$ integer multiples of $\lambda=$ standing waves
5) Planck $=$ photon particles $=$ whole number integers of h

Light Emission - Demo spectrum tubes

Emission spectrum = electron jumps between orbits = energy released
$\mathrm{E}_{\mathrm{o}}-\mathrm{E}_{\mathrm{f}}=\mathrm{hf}$
Electrons further from nucleus $=$ more STORED energy

History of Atomic Theory

1) Thomson $=$ plum pudding with + and - in atom Thomson's atomic model

2) Rutherford = nucleus has most of mass \& dense

3) Schrodinger - orbits are cloud or wave function = probability of being at certain point = electron can be ANYWHERE at ANY TIME

The blue area is the elctron clovd. The darker it is, the more likely the electron is there.

if absorbs photon $=$ starts at that orbital
if releases photon =ends at that orbital

Angular Momentum of an electron in Bohr Atom

$L=I \omega=m r^{2}(v / r)=m v r$
Bohr said integer multiples
of h....
$L_{n}=\frac{n h}{2 \pi}=m v r_{n}$

Orbital Radius and E of Bohr Atom $r_{n}=\left(5.29 \times 10^{-11} \mathbf{m}\right) n^{2 / Z} \quad r$ in meters
$E_{\text {(of atom) }}=-k Z e^{2 / 2 r} \quad E$ in Joules
$E_{n}=-\left(2.18 \times 10^{-18} \mathrm{~J}\right) Z^{2} / n^{2} \quad E$ in Joules
$E_{n}=-(13.6 \mathrm{eV}) \mathrm{Z}^{2} / \mathbf{n}^{2} \quad E$ in eV
**remember eV = energy to increase e- by $1 \mathrm{~J} / \mathrm{C}$ so $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} * *$
** note as $\mathrm{n} \Rightarrow \infty \ldots$. $\Rightarrow 0$ since electron escapes pull of nucleus**

Quantum Mechanics

**electrons do NOT stay in orbit
** electrons can't be assigned ONE orbital number (like n that Bohr uses)
**instead there are FOUR quantum numbers to describe electrons position and motion in an atom

4 Quantum Numbers:

1) n

- principle quantum \#
- = 1, 2,
- = shell

2) Orbital quantum \#

- l
- $0,1, \ldots$. , n-1
${ }_{s}^{\ell=0}$
- = subshell (s, p, d, f, g, h)

Electron configuration notation:

Pauli Exclusion Principle

No two electrons in the same atom can have ALL four quantum numbers the same

EX....do these combinations work??
$\mathrm{n}=2, \ell=1, \mathrm{~m}_{\iota}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
$\mathrm{n}=4, \ell=1, \mathrm{~m}_{\ell}=2, \mathrm{~m}_{\mathrm{s}}=-1 / 2$

Angular Momentum in Quantum world

$$
L=(\sqrt{\ell(\ell+1)})(h / 2 \pi)
$$

This means when $\ell=\mathbf{0}, \mathrm{L}=\mathbf{0}$ no matter what n is!!!

Number of electrons in an atom

$$
\# e=2(2 \ell+1)
$$

Bohr	Quantum
$L=n h / 2 \pi \neq 0$	$L=\sqrt{l(l+1)}(\mathrm{h} / 2 \pi)$ can $=0$
$\mathrm{L}=$ same for every orbit n	L can be different for same n
orbits = circles	orbits $=$ probability clouds = various shapes

Bombard target material with high energy electrons....(electrons moved with high V)

$$
\begin{aligned}
\mathrm{hf} & =\mathrm{KE}=\mathrm{eV} \\
\mathrm{f}_{\mathrm{o}} & =\mathrm{eV} / \mathrm{h} \\
\mathrm{c} / \lambda_{0} & =\mathrm{eV} / \mathrm{h}
\end{aligned}
$$

$$
\text { ***therefore min } \lambda \text { only }
$$

depends on bombarding
electrons NOT material***

LASERS

Light Amplification, Stimulated Emission of Radiation

One Color/monochromatic
In Phase/coherent
High Intensity

Number of electrons in an atom

$$
\# \mathrm{e}=2(2 \ell+1)
$$

